Mums ir nepieciešama jauna dokumentu iezīmēšanas valoda - šeit ir iemesls

Ievads: kāda ir problēma?

Jau tagad ir pieejamas daudzas dokumentu iezīmēšanas valodas. Vikipēdija savā dokumentu marķēšanas valodu sarakstā uzskaita vairāk nekā 70 variantus - HTML, Markdown, Docbook, Asciidoctor, reStructuredText utt.

Kāpēc tad šī raksta nosaukums liek domāt, ka mums vajag vēl vienu ???

Kāda ir problēma?

Ar esošajām dokumentu iezīmēšanas valodām ir divas pamatproblēmas: vai nu tās nav viegli izmantot, vai arī tās nav piemērotas sarežģītu dokumentu, piemēram, tehnisko rakstu, lietotāja rokasgrāmatu vai grāmatu, rakstīšanai. Piemērs “nav viegli lietojams, bet piemērots sarežģītiem dokumentiem” būtu Docbook. Piemērs “viegli lietojams, bet nav piemērots sarežģītiem dokumentiem” būtu Markdown.

Protams, iepriekšminētā kategorizēšana ir vienkāršota. Bet tam vajadzētu būt par labu sākumpunktu, lai iegūtu šī raksta būtību, kura mērķis ir ieskicēt praktiski sastopamās problēmas. Jūs redzēsiet daudzus reprezentatīvus iezīmēšanas koda piemērus, kas ilustrē kļūdas, papildinot saites uz plašāku informāciju.

Jūs atradīsit arī jaunu iezīmēšanas valodu. Daudzi piemēri parādīs, kā jauna sintakse var novest pie valodas, kas ir “viegli lietojama un piemērota sarežģītiem dokumentiem”. Pierādījums-of-jēdziens īstenošana jau ir pieejama. Vairāk par to vēlāk.

Iepriekšējas piezīmes

Lūdzu, ņemiet vērā:

  • Šis raksts ir par dokumentu iezīmēšanas valodām, kuras tiek izmantotas teksta dokumentu , piemēram, tīklā publicēto grāmatu un rakstu, rakstīšanai . Ir arī citas iezīmēšanas valodas, kas tiek izmantotas, lai aprakstītu konkrētus datus, piemēram, matemātiskās formulas, attēlus un ģeogrāfisko informāciju, taču tās nav šī raksta darbības jomā. Tomēr dažas šajā rakstā minētās idejas var tikt piemērotas arī cita veida iezīmēšanas valodām.
  • Šis raksts koncentrējas tikai uz iezīmēšanas valodu sintaksi . Mēs neapspriedīsim citus aspektus, kas arī ir svarīgi, izvēloties piemērotu iezīmēšanas valodu, piemēram: atbalsts jūsu OS, instalēšanas ērtums un atkarības, galīgo dokumentu izveidošanai pieejamā rīku ķēde, dokumentācijas kvalitāte, cena, klients / lietotāju atbalsts utt.
  • Šī raksta lasītājiem vajadzētu būt pamata pieredzei ar iezīmēšanas valodu, piemēram, HTML, Markdown, Asciidoctor vai tamlīdzīgi.
  • Lasītāji, kuri nezina par dokumentu iezīmēšanas valodu daudzajām priekšrocībām, vispirms varētu vēlēties izlasīt:

    Dokumentu iezīmēšanas valodu priekšrocības salīdzinājumā ar WYSIWYG redaktoriem (vārdu procesori)

Neērtības / 1. daļa

Vispirms ņemsim vērā dažas labi zināmas iezīmēšanas valodas un apskatīsim dažas neērtības.

HTML

HTML ir tīmekļa valoda. Tātad, kāpēc gan nerakstīt visu HTML? Iemesli, kāpēc šo iespēju izmest, ir labi zināmi. Ātri apkoposim tos.

HTML rakstīšana ir apgrūtinoša. Neviens nevēlas rakstīt XML kodu ar roku, kaut arī redaktori ar HTML / XML atbalstu varētu palīdzēt.

Dažiem biežiem rakstīšanas uzdevumiem ir nepieciešams nebūtisks HTML kods.

Pieņemsim, ka mēs vēlamies parādīt horizontāli centrētu attēlu ar vienkāršu melnu apmali un saiti. HTML kods, kuru varētu pieredzēt nepieredzējis lietotājs, varētu izskatīties šādi:

Bet kods, kas viņam vai viņai faktiski ir jāraksta, ir apgrūtinošs, un ir dažādi veidi, kā to izdarīt. Šeit ir viens veids:

 

HTML trūkst “produktivitātes funkciju rakstniekiem”, piemēram:

  • Automātiska satura rādītāja, rādītāja, glosārija utt. Ģenerēšana
  • Mainīgie, ko izmanto, lai saglabātu atkārtotas vērtības
  • Dokumenta sadalīšana dažādos failos

Citas neērtības tiks parādītas vēlāk.

Atlaide

Markdown ir ļoti populāra, viegla iezīmēšanas valoda. To ir viegli iemācīties un lietot, un tas ir labi piemērots īsiem un vienkāršiem tekstiem, piemēram, komentāriem forumos, readme failiem utt.

Tomēr tā cieš no šādām problēmām, kas padara to nederīgu sarežģītiem vai lieliem dokumentiem (piemēram, tehniskiem rakstiem, lietotāja rokasgrāmatām un grāmatām):

  • Džona Grūbera definētajā sākotnējā Markdown trūkst daudzu rakstnieku gaidīto funkciju, piemēram, tabulas (tiek atbalstītas tikai iegultas HTML tabulas), automātiska satura rādītāju ģenerēšana, sintakses izcelšana, failu sadalīšana utt.
  • Markdown nav unikālas, nepārprotamas specifikācijas. Pastāv daudz Markdown garšu, ar dažādiem noteikumiem un dažādām funkcijām. Tas noved pie nesaderības problēmām, kad tiek kopīgots iezīmēšanas kods. CommonMark ir mēģinājums atrisināt šo problēmu. Tomēr specifikācija ir milzīga un vēl nav pabeigta (rakstīšanas laikā 2019. gada aprīļa versija 0.28, kas datēta ar 2017. – 2008. Gadu, ir jaunākā).
  • Markdown has similar problems and limitations to those shown later in chapter “Inconveniences / Part 2”. These flaws can quickly become an annoyance when you use Markdown for anything else than short, simple texts.

Here is a list of articles with more information about Markdown’s shortcomings:

  • Why You Shouldn’t Use “Markdown” for Documentation
  • Sundown on Markdown?
  • Why Markdown Is Not My Favourite Language

Docbook

Docbook is an XML-based markup language that uses semantic tags to describe documents.

It has probably the most complete set of features among all markup languages. It has been used by many authors, is pre-installed on some Linux distributions, and is supported by many organizations and publishers. Docbook has been successfully used to create, publish, and print lots of big documents of all kinds.

But it has the following drawbacks:

It uses XML and a verbose syntax. Look at the following example, borrowed from Wikipedia:

 Very simple book  Chapter 1 Hello world! I hope that your day is proceeding splendidly!   Chapter 2 Hello again, world! 

Would you enjoy writing and maintaining such code?

Now compare the above code with the following one, written in a modern markup language like Asciidoctor:

= Very simple book== Chapter 1Hello world!I hope that your day is proceeding _splendidly_!== Chapter 2Hello again, world!

Docbook is also complex, and therefore hard to learn and use.

Output produced by Docbook, especially HTML, looks old-fashioned (see examples on its website). Of course, presentation can be customized, but this is not an easy task.

LaTeX

LaTeX is a high-quality typesetting system. It is widely used in academia to create scientific documents. It is considered to be the best option for writing PDF documents containing lots of mathematic formulas and equations.

I never used LaTeX myself, because I don’t write scientific documents — just articles and books to be published on the web. Therefore, I don’t want to comment on it too much. However, it is important to mention it because of its popularity in academia.

LaTeX’s unique syntax seems verbose to me, and a bit complex. Here is an abbreviated example from Wikipedia:

\documentclass{article}\usepackage{amsmath}\title{\LaTeX}
\begin{document} \maketitle \LaTeX{} is a document preparation system ...
 % This is a comment \begin{align} E_0 &= mc^2 \\ E &= \frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}} \end{align} \end{document}

The article Conversion from (La)TeX to HTML states that converting LaTeX math to HTML is “a challenge”.

Some markup languages allow LaTeX snippets to be embedded in their markup code, which can be very useful if you need the power of LaTeX for maths. There are other options to display maths on the web, such as Mathjax or MathML (an ISO standard and part of HTML5).

Popular for Big Documents

A impressive number of markup languages have emerged. Many of them use a syntax similar to Markup, and are therefore easy to learn and use. Some have more features than Markdown and are even extensible. However, as soon as we start writing complex documents, corner-cases and limits diminish the initial joy of using them.

Two popular markup languages used for big documents are Asciidoctor (an improved version of Asciidoc), and reStructuredText (an improved version of StructuredText). We will have a look at them soon.

Practical Markup Language (PML)

Before moving on to the most interesting part of this article, let me briefly introduce the new markup language I mentioned already in the introduction.

The language is called Practical Markup Language (PML).

“Noderīgi pielāgot konkrētas situācijas vajadzībām; palīdzot atrisināt problēmu vai grūtības; efektīva vai piemērota ” -„ praktiskā ”definīcija Kembridžas vārdnīcā

Es sāku PML projektu pirms dažiem mēnešiem, jo ​​nevarēju atrast iezīmēšanas valodu, kas būtu viegli lietojama un labi piemērota lieliem, sarežģītiem dokumentiem, piemēram, lietotāja rokasgrāmatai.

Nākamajā sadaļā mēs aplūkosim PML rakstītā iezīmēšanas koda piemērus, salīdzinot ar kodu, kas rakstīts citās valodās. Tātad vispirms pieminēsim divus PML sintakses pamatnoteikumus, kas nepieciešami, lai saprastu gaidāmos piemērus.

PML dokuments ir mezglu koks (līdzīgs XML / XHTML dokumentam). Katrs mezgls sākas ar a {, kam seko taga nosaukums. Katrs mezgls beidzas ar a }. Mezglā var būt teksts vai bērnu mezgli.

For example, here is a node containing text that will be rendered in italics:

{i bright}

This node starts with {i , and ends with }. i is the tag name. In this case i is an abbreviation for italic, which means that the node's content will be rendered in italics. The content of this node is the text bright. The above PML markup code will be rendered as:

bright

Some nodes have attributes, used to specify additional properties of the node (besides its tag name).

For example, the title of a chapter is defined with attribute title, as follows:

{chapter title=A Nice Surprise Once upon a time ...}

There is not much more to say about the basic concept of PML syntax. For more insight, and a description of features not used in this article, please consult the PML User Manual.

You can download and play around with a free implementation of PML. But please note: PML is a work in progress. There are missing features, you might encounter bugs, and backwards compatibility is currently not guaranteed.

I use PML myself to write all my web documents, such as this article. For links to more real-life examples please visit the FAQ.

Inconveniences / Part 2

I this section we’ll look at examples that reveal some problems encountered with markup languages. This is by no means an exhaustive enumeration of all troubles and corner cases. The aim is to just show a few examples that demonstrate the kind of inconveniences and limits encountered in the real world.

For each example the markup code will be shown in HTML, Asciidoctor, reStructuredText, and PML.

If you want to try out some code, you can use the following online testers (no need to install anything on your PC):

  • HTML
  • Asciidoctor
  • reStructuredText

An online tester for PML is not yet available. You have to install PML on a Windows PC if you want to try it out.

Font Styles

Font styles (italic, bold, monospace, etc.) are often used in all kinds of documents, so good support is essential.

But as we will see, surprises and limits can emerge, as soon as we have to deal with non-trivial cases. Let’s look at some examples to illustrate this.

Part of a Sentence in Italics

Suppose we want to write:

They called it Harmonic States, a good name.

This is a trivial case, and all languages support it.

HTML:

They called it Harmonic States, a good name.

Asciidoctor:

They called it _Harmonic States_, a good name.

reStructuredText:

They called it *Harmonic States*, a good name.

PML:

They called it {i Harmonic States}, a good name.

Part of a Word in Italics

We want to write:

She unwrapped the challenge first.

HTML:

She unwrapped the challenge first.

Asciidoctor:

She __un__wrapped the challenge first.

Note that we have to use two underscores. Using a single underscore (as in the first example), would result in:

She _un_wrapped the challenge first.

reStructuredText:

She *un*\wrapped the challenge first.

Note that the letter w has to be escaped (preceded by a backslash) for reasons explained here. If the letter is not escaped then a warning is displayed and the result is:

She *un*wrapped the challenge first.

PML:

She {i un}wrapped the challenge first.

Text in Bold And Italic

We want to write:

They were all totally flabbergasted.

HTML:

They were all totally flabbergasted.

Asciidoctor:

They were all *_totally flabbergasted_*.

reStructuredText:

Combining bold and italic is not supported in reStructuredText, but there are some complicated workarounds.

PML:

They were all {b {i totally flabbergasted}}.

Real-Life Example

Here is an example inspired by an Asciidoctor user who asked how to display:

_idoptional.

Let’s make the exercise a little bit more interesting by also displaying:

_idoptional.

HTML:

_idoptional_idoptional

No surprise here. It just works as expected.

Asciidoctor:

Intuitive attempt:

*_id* _optional___id_ *optional*

The first line doesn’t work, it produces:

id _optional

However, the second line works, which is a bit counterintuitive.

If normal text includes a character that is also used for markup (in our case the _ preceding id), then the character must be escaped. This is a fundamental rule in pretty much all markup languages. For example in HTML a < must be escaped with <. Many languages (including Asciidoctor and PML) use a backslash prefix (e.g. \r) to escape. So let's rewrite the code:

*\_id* _optional__\_id_ *optional*

This doesn’t work in Asciidoctor. It produces

_id _optional_

and

\_id optional

Here is a correct version, as suggested in an answer to the user’s question:

*pass:[_]id* _optional__pass:[_]id_ *optional*

Another answer suggests this solution:

*_id* __optional_____id__ *optional*

More edge case are documented in chapters Unconstrained formatting edge cases and Escaping unconstrained quotes of the Asciidoctor User Manual.

reStructuredText:

**_id** *optional**_id* **optional**

There is no problem here, because the character _ is not used in reStructuredText to define markup.

However, suppose we wanted to write:

*id**optional*.

Here is the code:

*\*id\** ***optional***

Note that the *s in id must be escaped, but the *s in optional don't need to be escaped.

PML:

{b _id} {i optional}{i _id} {b optional}

Nested Font Styles

Nested font styles of the same kind (e.g. .........) occur rarely in text written by humans, but they could be more or less frequent in auto-generated markup code. If they are not supported then the tool that generates the markup code becomes more complicated to implement, because it must track the font styles that are active already, in order to avoid nesting them.

So, how is this supported in the different languages?

HTML:

This is excellent, isn't it?

No problem, it produces

This is excellent, isn’t it?

Asciidoctor:

_This is _excellent_, isn't it?_

The above code is obviously ambiguous: Are the italics nested or do we want to italicize “This is “ and “, isn’t it?”. When I tested it, the result was neither of it:

This is _excellent, isn’t it?_

As far as I now, Asciidoctor doesn’t support nested font styles of the same kind.

reStructuredText:

The reStructuredText specification states: “Inline markup cannot be nested.” However, no error is displayed if it is nested, and the result is unspecified.

PML:

{i This is {i excellent}, isn't it?}

Font styles of the same kind can be nested in PML. The above code results in:

This is excellent, isn’t it?

Nested Chapters

Suppose we are writing an article titled “New Awesome Product” that contains four chapters. The structure looks as follows:

New Awesome Product Introduction More features Faster Less resources

Later on we decide to insert chapter “Advantages” as a parent of the three last chapters. The structure now becomes:

New Awesome Product Introduction Advantages More features Faster Less resources

What are the changes required in the markup code to pass from version 1 to version 2? Can we simply insert the code for a new chapter? Let’s see.

HTML:

Note: Code changes are displayed in bold.

As shown above, besides inserting the new chapter, we have to change the markup for the three child chapters: h2 must be changed to h3.

Asciidoctor:

Again, we have to change the markup for the three child chapters: == must be changed to ===

Note: The blank lines between the chapters are required, otherwise the document is not rendered correctly.

reStructuredText:

The markup for the three child chapters must be changed: All occurrences of = must be changed to -

The non-trivial rules for reStructuredText’s sections can be looked up here.

PML:

In PML, there is no need to change the code of the three child chapters.

Bottom Line:

In all languages, except PML, the markup code of all child chapters must be adapted if a parent chapter is inserted.

This is not a deal-breaker in case of small articles with few chapters. But image you are writing your next big article or book with lots of chapters and frequent changes. Now, the necessity to manually update child chapters can quickly turn into a daunting, boring, and error-prone task.

Note: Asciidoctor provides a leveloffset variable that can be used to change the level of chapters. This might be useful in some cases, but it also creates additional unneeded complexity, as can be seen here and here.

A more serious kind of problem can arise in the following situation: Imagine a set of different documents that share some common chapters. To avoid code duplication, the common chapters are stored in different files, and an insert file directive is used in the main documents. This works fine as long as the levels of all common chapters are the same in all documents. But troubles emerge if this is not the case.

It is also worth to mention that HTML, Asciidoctor and reStructuredText don’t protect us against wrong chapter hierarchies. For example, you don’t get a warning or error if a chapter of level 2 contains a direct child chapter of level 4.

In a language like PML, the above problems simply don’t exist, because the level is not specified in the markup code. All chapters (of any level) are defined with the same, unique syntax. The chapters’ tree structure (i.e. the level of each chapter) is automatically defined by the parser. And wrong hierarchies in the markup code, such as a missing } to close a chapter, are flagged by an error message.

Lists

In Asciidoctor the kind of problems we have seen with chapter hierarchies can also arise with list hierarchies (e.g. lists that contain lists). The reason is the same as for chapters: Asciidoctor lists use different markup code to explicitly specify the level of list items (* for level 1, ** for level 2, etc.). Moreover, there are a number of complications you have to be aware of when working with complex list content.

In reStructuredText, nested lists are created using indentation and blank lines. This works fine for simple nested lists, but creates other problems in more complex cases (not discussed here). Using whitespace (e.g. blank lines and indentation) to define structure in markup code is a bad idea, as we’ll see soon.

HTML un PML iepriekš minētās problēmas nepastāv ar sarakstiem, jo ​​vecāku un bērnu mezglu sintakse ir vienāda.

Atstarpes vieta un atkāpe

Sākumā, izmantojot atstarpi, struktūras šuvju noteikšanai, piemēram, laba ideja. Apskatiet šo piemēru:

parent child 1 child 2

Struktūra ir ļoti viegli lasāma un rakstāma. Nav nepieciešamas trokšņainas īpašās iezīmju rakstzīmes.

Tāpēc iezīmēšanas valodas dizaineriem ir vilinoši izmantot atstarpi kā vienkāršu veidu, kā definēt struktūru. Diemžēl tas darbojas labi tikai vienkāršām konstrukcijām, un tam ir citas neērtības, kuras mēs drīz redzēsim.

Tāpēc iezīmēšanas valodās, kas paredzētas darbam ar sarežģītu saturu, jāpiemēro vienkāršs, bet svarīgs noteikums:

"Atstarpes telpa nemaina dokumenta struktūru vai semantiku." - atstarpe - nenozīmīga

Ko tas nozīmē?

First, let us define whitespace: Whitespace is any set of one or more consecutive spaces, tabs, new lines, and other Unicode characters that represent space.

In our context, the above rule means that:

Within text, a set of several (i.e. more than one) whitespace characters is treated the same as a single space character.

For example, this code:

a beautiful flower

… is identical to this one:

a beautiful flower

Between structural elements, a set of whitespace characters is insignificant.

For example, this code:

… is identical to this one:

A special case of whitespace is indentation (leading whitespace at the beginning of a line). The above rule implies that indentation is insignificant too. Indentation doesn’t change the result of the final document.

Applying the whitespace-insignificant rule is important, because it leads to significant advantages:

  • There is no need to learn, apply and worry about complex whitespace rules (see examples below).

    Violating the whitespace-insignificant rule in a markup specification adds unneeded complexity, and can lead to markup code that is ugly, error-prone, and difficult to maintain, especially in the case of nested lists.

  • Whitespace can freely be used by authors to format the markup code in a more understandable, presentable and attractive way (pretty printing). For example, lists (and lists of lists) can be indented to display their structure in a visually clear and maintainable way, without the risk of changing the underlying structure.
  • Text blocks can be copy/pasted without the need to adapt whitespace.
  • If shared text blocks (stored in different files) are imported into several documents with different structures, there is no risk of changing or breaking the structure.
  • There is no unexpected or obscure behavior if the whitespace is not visible for human readers. Some examples:

    - a mixture of whitespace characters, such as spaces and tabs, especially when used to indent code

    - whitespace at the end of a line

    - whitespace in empty lines

    - visually impaired (blind) people who can’t read whitespace

    Note: To alleviate the pain, some editors provide a display-whitespace mode.

  • Tools that generate markup code, as well as markup parsers are generally easier to create.
  • In some situations it is useful to reduce whitespace to a minimum (e.g. no new lines), in order to save storage space and improve performance.

If you want a few examples demonstrating the kind of technical problems that arise if whitespace is significant, you can read:

  • What are the downsides to whitespace indentation rather than requiring curly braces?
  • F# syntax: indentation and verbosity
  • Issue in nodeca/js-yaml

So, how is whitespace handled in the languages we are discussing in this article?

HTML:

HTML applies the whitespace-insignificant rule.

For a thorough explanation, look at this excellent article written by Patrick Brosset: When does white space matter in HTML?.

Asciidoctor:

In Asciidoctor, whitespace is significant in some cases.

This can lead to surprising behavior and problems with no easy or no satisfying solution. Some examples can be seen here and here.

reStructuredText:

reStructuredText has whitespace rules that are ‘a bit surprising’.

For example, writing *very* results in very (text in italics, as expected). However, * very* results in * very* (no italics!), because of the whitespace preceding "very". To understand why, the answer might be found in chapter Whitespace of the specification.

PML:

Similar to HTML, PML applies the whitespace-insignificant rule.

There is one exception: For practical reasons, a blank line between two text blocks results in a paragraph break. This means that instead of writing:

{p text of paragraph 1}{p text of paragraph 2}

… we can simply write:

text of paragraph 1text of paragraph 2

Note: Sometimes, whitespace is significant in text. For example whitespace must be preserved in source code examples. Or, in verbatim text, several consecutive spaces or new lines must be preserved in the final document. All languages support this. However, in reStructuredText it’s not always obvious how to it, as shown here.

Other Inconveniences

As seen already, some markup languages systematically use opening and closing tags. An example would be <;i>; and in HTML. All XML-based languages, as well as PML belong to this class of languages.

Without digging into details, here are some drawbacks that can occur in languages that do not (or not always) use pairs of distinct opening/closing tags (e.g. Markdown, Asciidoctor, and reStructuredText):

Editor support

Creating good, reliable editor support is more difficult to develop. Examples of useful editor features are:

  • syntax highlighting for markup code
  • markup code completion
  • visualizing pairs of block start/end marks (e.g. { and its corresponding })
  • block collapsing/expanding

    In the case of languages that use distinct opening/closing tags, the two last features work out-of-the-box in some editors. For example, PML uses { and } for node boundaries. This is also used in many programming languages (C, Java, Javascript, etc.) and therefore block features implemented for programming languages will also work for PML.

Document validation

Fewer syntax and structure errors can be detected automatically. This can lead to more time spent on debugging documents. Or, even worse, there might be silently ignored errors that end up in wrong output (Did I really fail to spot the missing warning block on page 267 of my 310 pages book?).

Parsers

It is more difficult to create parsers (i.e. programs that read markup code) that work well in all cases. If different parsers read the same markup code, there is an increased risk of getting different results for corner-cases.

Auto-generated markup code

Tools that generate markup code programmatically are more difficult to create. For example, if whitespace is significant, or font styles cannot be nested, then additional state must be updated and tracked, in order to respect these rules.

My Own Experience

When I started writing technical documents a few years ago, I used Docbook. It took me some time to learn it, but after that I never stumbled on anything I couldn’t do. Docbook is powerful. However, I disliked typing verbose XML code. I tried some XML editors, but gave up. Finally I just wrote complete text blocks unformatted in Notepad++, and then adorned the text with the necessary markup code. It was frustrating and time-consuming. Moreover, I couldn’t find a stylesheet that produced good-looking web documents, and I didn’t have the patience, motivation, and experience to fiddle around with big, complex CSS files and adapt them.

Later on I discovered Asciidoctor. What a relief. Everything was so much simpler and the web documents were beautiful, out of the box. Asciidoctor’s documentation is great, and I think the community is helpful and active. However, when I started to write more complex and bigger documents, I had to deal with problems similar to those described in the previous sections. At one point, I had to develop a specific pre- and post-processor to solve a problem for which I couldn’t find a solution in Asciidoctor/Gitbook.

An intriguing question emerged: “Why do these problems not exist in Docbook?”.

To make a long story short, I concluded that we need a new markup syntax. The key points to success would be:

  • easy to learn: few, simple, consistent and predictable rules (no exceptions)
  • easy to write and read
  • well-structured documents with no ambiguities
  • powerful enough to create big, complex documents without the need for “special rules, tricks, or workarounds”

After a period of investigating, pondering, programming, testing and improving, the Practical Markup Language (PML) was born. Since then, I never looked back again. Today I write all my web documents in PML (including this article).

Of course, when I started to create PML, it was to cover my own needs. So, I am probably biased. Hopefully this article contains enough factual examples, but I encourage you to leave a comment if you see anything wrong, unfair, or missing. I appreciate constructive feedback of any kind, and I will update the article if needed.

Conclusion

As demonstrated in this article, a good number of problems encountered with existing document markup languages vanish with the PML syntax.

Now we should come together to improve PML and make it more powerful, so that it covers more use cases and more people can benefit from it.

Please help to spread the word. Or try out PML and send feedback, so that we know what needs to be refined. Your voice counts!

The vision is to create the best possible document markup language and all necessary tools, so that writers can focus on writing and enjoy creating beautiful documents in a minimum of time — without worrying about unneeded complexity.





#####